jsGeoDa
  • jsGeoDa (beta)
  • User Guide
    • Installation
    • Hello jsgeoda!
    • Load Spatial Data
  • Choropleth Mapping
    • Basic Mapping
    • Cartogram
    • Rate Mapping
    • Spatial Rate Mapping
  • Spatial Weights
    • Contiguity-Based Weights
    • Distance-Based Weights
    • Kernel Weights
  • Local Spatial Autocorrelation
    • Local Moran
    • Local Geary
    • Local Getis-Ord G
    • Local Join Count
    • Quantile LISA
  • Multivariate Local Spatial Autocorrelation
    • Local Neighbor Match Test
    • Multivariate Local Geary
    • Bivariate Local Join Count
    • Multivariate Local Join Count
    • Multivariate Quantile LISA
  • Spatial Clustering
    • SKATER
    • REDCAP
    • SCHC
    • AZP
    • Max-p
  • Cluster Analysis
  • HDBScan
  • Fast K-Medoids
  • API REFERENCE
    • jsgeoda
Powered by GitBook
On this page
  • maxpGreedy()
  • Arguments
  • Return
  • maxpSA()
  • Arguments
  • Return
  • maxpTabu()
  • Arguments
  • Return

Was this helpful?

  1. Spatial Clustering

Max-p

The max-p-region problem is a special case of constrained clustering where a finite number of geographical areas are aggregated into the maximum number of regions (max-p-regions), such that each region is geographically connected and the clusters could maximize internal homogeneity.

maxpGreedy()

A simulated annealing algorithm to solve the max-p-region problem

function maxpGreedy(
    WeightResult w,
    Array vals,
    Number iterations,
    Array min_bound_values, 
    Array min_bounds,
    Array max_bound_values, 
    Array max_bounds,
    String scale_method,
    String distance_type,
    Number seed)

Arguments

Name

Type

Description

weights

WeightsResult

The weights object WeightsResult

vals

Array

The list of numeric vectors of selected variable.

iterations

Number

The number of iterations of greedy algorithm. Defaults to 1.

min_bounds_values

Array

The list of numeric array of selected minimum bounding variables.

min_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be greater than.

max_bounds_values

Array

The list of numeric array of selected maximum bounding variables.

max_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be less than.

scale_method

String

The scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'}. Defaults to 'standardize'.

distance_method

String

The distance methods {"euclidean", "manhattan"}. Defaults to 'euclidean'.

seed

Number

The seed for random number generator

Return

Type

Description

ClusteringResult

The Clustering object: {'total_ss', 'within_ss', 'between_ss', 'ratio', 'clusters'}

Examples

const jsgeoda = require('jsgeoda');
const fs = require('fs');

// load data
const data = fs.readFileSync('./data/natregimes.geojson').buffer;

// create jsgeoda instance
const geoda = await jsgeoda.New();

// load geojson in jsgeoda
const nat = geoda.readGeoJSON(data);

// create a queen contiguity weights
const w = geoda.getQueenWeights(nat);

// get values
const hr60 = geoda.getColumn(nat, "HR60");
const ue60 = geoda.getColumn(nat, "UE60");

// set minimum bound
const po60 = geoda.getColumn(nat, "PO60");

// apply azp_greedy
const min_bound_vals = [po60];
const min_bounds = [17845200];
const azp = geoda.maxp_greedy(w, [hr60, ue60], 49, min_bound_vals,min_bounds);
import React, { Component } from "react";
import ReactDOM from "react-dom";
import DeckGL from "@deck.gl/react";
import { GeoJsonLayer } from "@deck.gl/layers";
import { StaticMap } from "react-map-gl";
import colorbrewer from "colorbrewer";
import jsgeoda from "jsgeoda";

// Set your mapbox access token here
const MAPBOX_TOKEN =
  "pk.eyJ1IjoibGl4dW45MTAiLCJhIjoiY2locXMxcWFqMDAwenQ0bTFhaTZmbnRwaiJ9.VRNeNnyb96Eo-CorkJmIqg";

// The geojson data
const DATA_URL = `https://webgeoda.github.io/data/natregimes.geojson`;

class App extends Component {
  constructor() {
    super();
    this.state = {
      mapId: "",
      layer: null,
      viewPort: {
        longitude: -100.4,
        latitude: 38.74,
        zoom: 2.5,
        maxZoom: 20
      }
    };
  }

  // load spatial data when mount this component
  loadSpatialData(geoda) {
    fetch(DATA_URL)
      .then((res) => res.arrayBuffer())
      .then((data) => {
        // load geojson in jsgeoda, an unique id (string) will be returned for further usage
        const nat = geoda.readGeoJSON(data);
        const w = geoda.getQueenWeights(nat);
        const hr60 = geoda.getColumn(nat, "HR60");
        const ue60 = geoda.getColumn(nat, "UE60");
        const po60 = geoda.getColumn(nat, "PO60");
        const redcap = geoda.skater(w, 10, [hr60, ue60], 17845200, po60);
        //const redcap = geoda.schc(w, 10, [hr60, ue60], 'ward', 17845200, po60);
        //const redcap = geoda.redcap(w, 10, [hr60, ue60], "fullorder-wardlinkage", 17845200, po60);
        //const azp = geoda.azpGreedy(w, 20, [hr60, ue60], 1, [], [po60],[17845200]);
        //const redcap = geoda.azpTabu(w, 20, [hr60, ue60], 10, 10, 1, [], [po60],[17845200]);
        //const redcap = geoda.azpSA(w, 20, [hr60, ue60], 0.85, 1, 1, [], [po60],[17845200]);
        //const redcap = geoda.maxpGreedy(w, [hr60, ue60],  1, [po60],[17845200]);
        const colors = colorbrewer["Paired"][10].map((c) =>
          c
            .toLowerCase()
            .match(/[0-9a-f]{2}/g)
            .map((x) => parseInt(x, 16))
        );

        // Viewport settings
        const view_port = geoda.get_viewport(
          nat,
          window.innerHeight,
          window.innerWidth
        );

        // Create GeoJsonLayer
        const layer = new GeoJsonLayer({
          id: "GeoJsonLayer",
          data: DATA_URL,
          filled: true,
          getFillColor: (f) => this.getFillColor(f, redcap.clusters, colors),
          stroked: true,
          pickable: true
        });

        // Trigger to draw map
        this.setState({
          mapId: nat,
          layer: layer,
          viewPort: view_port
        });
      });
  }

  componentDidMount() {
    // jsgeoda.New() function will create an instance from WASM
    jsgeoda.New().then((geoda) => {
      this.loadSpatialData(geoda);
    });
  }

  // Determine which color for which geometry
  getFillColor(f, clusters, colors) {
    const i = f.properties.POLY_ID - 1;
    const c = clusters[i] - 1;
    return colors[c];
  }

  render() {
    return (
      <div>
        <DeckGL
          initialViewState={this.state.viewPort}
          layers={[this.state.layer]}
          controller={true}
          getTooltip={({ object }) =>
            object && `${object.properties.NAME}: ${object.properties.HR60}`
          }
        >
          <StaticMap mapboxApiAccessToken={MAPBOX_TOKEN} />
        </DeckGL>
      </div>
    );
  }
}

ReactDOM.render(<App />, document.getElementById("root"));

Try it yourself in the playground (jsgeoda + deck.gl):

maxpSA()

A simulated annealing algorithm to solve the max-p-region problem

function maxpSA(
    WeightResult w,
    Array vals,
    Number cooling_rate,
    Number sa_maxit,
    Number iteration,
    Array min_bound_values, 
    Array min_bounds,
    Array max_bound_values, 
    Array max_bounds,
    String scale_method,
    String distance_type,
    Number seed)

Arguments

Name

Type

Description

weights

WeightsResult

The weights object WeightsResult

values

Array

The list of numeric vectors of selected variable.

cooling_rate

Number

The cooling rate of a simulated annealing algorithm. Defaults to 0.85

sa_maxit

Number

The number of iterations of simulated annealing. Defaults to 1

iterations

Number

The number of iterations of greedy algorithm. Defaults to 1.

min_bounds_values

Array

The list of numeric array of selected minimum bounding variables.

min_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be greater than.

max_bounds_values

Array

The list of numeric array of selected maximum bounding variables.

max_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be less than.

scale_method

String

The scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'}. Defaults to 'standardize'.

distance_method

String

The distance methods {"euclidean", "manhattan"}. Defaults to 'euclidean'.

seed

Number

The seed for random number generator.

Return

Type

Description

ClusteringResult

The Clustering object: {'total_ss', 'within_ss', 'between_ss', 'ratio', 'clusters'}

maxpTabu()

A simulated annealing algorithm to solve the max-p-region problem

function maxpTabu (
    WeightResult w,
    Array vals,
    Number tabu_length,
    Number conv_tabu,
    Number iterations,
    Array min_bound_values, 
    Array min_bounds,
    Array max_bound_values, 
    Array max_bounds,
    String scale_method,
    String distance_type,
    Number seed)

Arguments

weights

WeightsResult

The weights object WeightsResult

values

Array

The list of numeric vectors of selected variable.

tabu_length

Number

The length of a tabu search heuristic of tabu algorithm. Defaults to 10.

conv_tabu

Number

The number of non-improving moves. Defaults to 10.

iterations

Number

The number of iterations of greedy algorithm. Defaults to 1.

min_bounds_values

Array

The list of numeric array of selected minimum bounding variables.

min_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be greater than.

max_bounds_values

Array

The list of numeric array of selected maximum bounding variables.

max_bounds

Array

The list of minimum value that the sum value of bounding variables in each cluster should be less than.

scale_method

String

The scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'}. Defaults to 'standardize'.

distance_method

String

The distance methods {"euclidean", "manhattan"}. Defaults to 'euclidean'.

seed

Number

The seed for random number generator.

Return

Type

Description

ClusteringResult

The Clustering object: {'total_ss', 'within_ss', 'between_ss', 'ratio', 'clusters'}

PreviousAZPNextHDBScan

Last updated 3 years ago

Was this helpful?